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Abstract

Atlas is a generalized execution abstraction [1] protocol that facilitates programmable MEV
mitigation at the application layer. It minimizes the complexity and cost associated with deploying
application-specific order flow auctions (OFAs), and supports the development of both intent-
centric auctions and backrun auctions [2]. The Atlas EntryPoint contract unifies solver networks
across applications and can facilitate permissionless order flow on any EVM chain.

1 Introduction

The Atlas framework enables programmability and customizability for OFA developers. Developers
can build OFAs that take computational paths as the user input and attach a backrun, as well as OFAs
that take intents as the user input. The modularity of Atlas will allow developers to easily adopt new
technologies that come to market, such as privacy-preserving verifiable computation and consensus
mechanisms for OFAs.

The Atlas EntryPoint contract abstracts away complexity for application developers, and lowers
the costs associated with deploying a new OFA. Applications that share a unified EntryPoint will have
lower barriers to entry for solvers to integrate and low-friction collaboration with other applications.
This should provide developers on Atlas with more competitive execution than they could achieve by
building an OFA from scratch, and for significantly less resources.

The majority of current permissionless OFAs rely on certain guarantees from block builders [3].
Execution abstraction, a subset of account abstraction (AA), is used in the EntryPoint contract to
replace these requirements for Atlas developers [4]. This facilitates permissionless order flow on L2s
and other alternative EVM ecosystems, addressing underserved user bases that are expected to grow
rapidly in the near future. Permissionless solver execution increases decentralization, competition, and
transparency in the MEV supply-chain. Additionally, AA enables ’execution logic flexibility,’ which
can be utilized to enhance the user experience [5].

2 Background

2.1 Motivation

Optimizing DeFi trade execution is complex due to liquidity fragmentation and EOA transactions
that require users to specify the full computational path of a transaction. This often results in poor
default execution for users. By outsourcing computation to a competitive market, UniswapX, 1inch
Fusion, and CowSwap have demonstrated early product-market fit by implementing more MEV-aware
execution in their interfaces. UniswapX is required to fill trades at or above a Uniswap V2 and V3
aggregated price, and they have already achieved over $3 billion in volume since a July 5th soft roll-out
[6]. Today the top 3 solvers on UniswapX generally represent 80-90% of the volume [6]. This raises
concerns about the centralization of OFAs, which may cause them to “lose some of the benefits of
vigorous competition and innovation” [7]. An example is the payment-for-order-flow profits in US
markets; in 2021, a dozen large US brokerages earned a combined $3.8 billion from selling their order
flow [8]. We should strive for a more competitive and transparent order flow market in DeFi that
ensures better execution for users, competing away potential sources of rent-seeking.
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In addition to the risk of rent-seeking, the centralization of OFAs creates advantages in access to
order flow, which have centralizing effects on block production [9]. These advantages make it easier
for block builders to engage in practices such as censoring transactions, refusing to adopt new features
that would benefit users/validators, and reducing the transparency of the MEV supply chain [10].

2.2 Intents in the MEV Supply-Chain

When the winning builder for the next block is not a bidder for the user order in an OFA, there may be
multiple sequential auctions for the inclusion of a user order on-chain. An entity has to win both the
auction for the right to execute the user order and be successful in the blockspace auction. An intent
OFA will always occur first, as it is where the transaction lifecycle begins. RPCs or other entities may
host additional OFAs between the intent auction and blockspace auction. Since Atlas is the first of
these sequential auctions, it should be able to capture much of the total value of the order flow before
it becomes available to any subsequent auctions.

2.3 Default MEV Protection

MEV solutions that directly target users with an alternative RPC solution suffer from adverse selection.
The users most likely to use these solutions are knowledgeable about MEV and, therefore, likely
generate the least MEV. Switching the RPC on behalf of the user to offer default MEV protection
might seem like an obvious solution, but as described in EIP3085, doing so presents an unacceptable
security risk and adds additional trust assumptions. Execution abstraction unlocks the ability for
Atlas developers to offer default MEV protection to users by eliminating the need to forcibly change
the user’s RPC. This allows Atlas to target the most unsophisticated users who need MEV protection
the most.

2.4 Application-specific OFAs

Atlas developers can improve the performance of their OFA by customizing it with configurable pa-
rameters, programmable hooks, and a range of service provider options. This flexibility enables various
use-cases, such as gas-less swaps and outsourced aggregation to a competitive market of solvers [11].
Additionally, it supports OFAs in which a value-creating party—typically a user—specifies a full com-
putational path and is paired with a backrun [3]. In Atlas, the backrun is natively bundled into a
single transaction before being sent to the RPC.

2.5 “On Chain Solving”

The Atlas EntryPoint provides developers with a standard that allows them to remain in control over
their stack, and a network of solvers that have reduced friction to integrate their OFA. There is a
growing market of interfaces that are adopting OFAs, and we believe this trend will continue with user
adoption and multi-chain scaling [12]. There are strong incentives for the interface to want control over
their OFA as a way to lower fees and internalize more value. Solvers have limited resources though,
and the costs of bootstrapping a competitive solver network to integrate a new OFA standard could
be high.

3 Atlas Architecture

3.1 Key Roles

• Originator

The originator is the party that initiates the Atlas process by generating an EIP-712 signature
(UserOperation) perceived as having intrinsic value by a subset of the solver network. Although
the originator is typically an end user interacting with a frontend, this role can be arbitrarily
designated to any entity capable of verification by the Atlas EntryPoint contract. Examples of
eligible entities include smart contracts, block builders, MPC wallets, coprocessors, eigenlayer
AVS, oracle operators, or any other entity specified by the Atlas module [13]. The assignment of
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the originator role to entities other than regular users can significantly alter auction dynamics,
unlocking innovative mechanisms such as an LVR-mitigating Uniswap V4 pool or a state-proof
contingency immune to reorganizations [14].

• Auctioneer

The auctioneer is responsible for aggregating UserOperations with SolverOperations and then
using the bid valuation function of the invoked Atlas module to sort the SolverOperations. The
auctioneer signs a DAppOperation, which includes a CallChainHash, ensuring that UserOp-
erations and SolverOperations cannot be reordered by other actors in the transaction supply
chain. Each application must designate a party to act as the auctioneer. This assignment should
be made carefully to ensure the integrity of the process. It is strongly recommended that the
application select the auction beneficiary to act as the auctioneer, which in most cases is the
originator. The complex responsibilities of this role can be either partially or fully automated
by a locally-run integration of the Atlas SDK with the app’s interface. Due to the pre-existing,
explicit trust that regular users place in the interface, the net new trust assumptions of using
Atlas are limited to the censorship resistance and reliability of the OR.

In the future, TEEs can act as a shared auctioneer for Atlas applications, and use the re-
duced information uncertainty to generate more value. Some benefits of such an interoperable
OFA include finding CoW (coincidences of wants) or complementary operations, and facilitating
solver/builder collaboration across the MEV supply chain [15]. In a world where many solvers
collaborate on MEV optimizations, centralized block builders may not be necessary to find the
most efficient outcome. The more Atlas applications that opt into this interoperability, the more
efficient the solver execution should become.

• Operations Relay (OR)

The OR serves as an infrastructure layer facilitating communication between originators, auc-
tioneers and solvers. Each OR will possess distinct characteristics impacting user experience,
decentralization, latency, and privacy. The prioritization of these traits is not uniform across
applications. To ensure that applications don’t need to compromise core values to use Atlas,
developers will be able to choose an OR that aligns with their unique needs. Developers can
opt for a highly reputable service provider to assume the OR role, or explore more decentralized
options offering high throughput consensus. The OR can employ various techniques to miti-
gate frontrunning such as hints, artificial order flow, bonding, and reputation [3] [16]. ORs that
support decentralized and privacy-preserving intents, such as SUAVE and Anoma, will also be
available to Atlas developers as they come to market [17] [18].

• Bundler

The bundler is responsible for generating the full Atlas transaction and ensuring its inclusion
on-chain. By customizing their Atlas module, an app can enable one or more of the following
configurations: anyone may bundle the transaction, an originator may bundle their own transac-
tion, a solver may bundle a transaction including just their own operation and the originator’s,
and an explicitly designated bundler can bundle the transaction. When using an explicitly des-
ignated bundler, applications can choose between a permissioned actor(s) or a trust-minimized
solution built on architecture using TEE, MPC, or similar [19]. Verification of the CallChainHash
by the Atlas EntryPoint contract prevents the bundler from censoring operations or tampering
with their order. A malicious permissioned bundler is limited to frontrunning the transaction to
induce SolverOperations to fail and collect the gas rebates, but the cost of such an attack scales
with the number of SolverOperations they must frontrun; this attack vector is rarely profitable.
This approach isolates the complexity of solving to a permissionless role, allowing bundlers to
operate as minimally trusted, incentive-aligned ”dump-pipes” for developers who require them.
Simplifying the role of bundlers and reducing the trust placed in them increases decentralization
by making it difficult for them to gain a competitive edge, and lowering their bargaining power
in the system. This can help prevent a fragmented and opaque market of block builders and
searchers from dominating bundling.
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Figure 1: A diagram depicting the Atlas transaction lifecycle.

3.2 Atlas SDK

The Atlas SDK is designed to easily allow parties to sign a CallChainHash. The CallChainHash
signature is verified by the Atlas smart contract to guarantee that the bundler cannot tamper with
the execution order of the operations. Any party can easily generate this hash by making a view call
to the getCallChainHash(SolverOperations[]) function.

When the user is appointed as the auctioneer, session keys may be utilized to avoid manually
performing multiple signatures [20]. This could involve generating on-demand private keys for the
interface to perform one-time signatures of the CallChainHash on the users behalf. These keys can be
set to expire or be revoked after the execution of the UserOperation.

3.3 Native Bundling

Currently, permissionless backrun OFA designs rely on guarantees provided by block builders. However,
the majority of blockchain ecosystems lack block builders or validators that offer these guarantees.
Atlas supports permissionless, multi-chain OFAs without these trust assumptions by using AA. Native
bundling specifically implements the execution and gas abstraction capabilities of AA, allowing Atlas
OFAs to be intent-centric and improve user experience [1]. Native bundling is compatible with standard
EOAs, eliminating the need for originators to adopt a “smart wallet”. This is achieved by aggregating
EIP-712 messages of multiple parties through the Atlas EntryPoint contract.

Some of the guarantees from builders that OFAs utilize include bundle atomicity, ensuring bundles
are omitted from the block if a transaction reverts, and pseudo-atomic searcher-to-originator payments:

• Bundle Atomicity

Due to the CallChainHash explained above, no party can reorder UserOperations or Solver-
Operations in Atlas. This restriction significantly narrows the attackable surface of an Atlas
transaction for bundlers, proposers, and block builders. Directly censoring a SolverOperation is
not possible without also censoring the UserOperation.

• “No Reverts”

Without the guarantee of transactions that won’t revert, backrun OFAs with failed transactions
can result in unfavorable outcomes for users. If the solver’s transaction fails, the corresponding
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user’s swap transaction can either fail on chain, leading to a delay in execution until a further
auction can be held and incurring additional gas costs, or succeed and forfeit the MEV rebate. As
OFAs expand to lower latency block time environments, where state changes more rapidly and
simulations are less accurate, the issue of transaction failure may worsen. This lack of execution
guarantees poses a challenge for permissionless OFAs on L2s and alt chains.

Atlas native bundling enhances execution probabilities by facilitating the aggregation of multiple
third-party SolverOperations with a single UserOperation. In the event of the winning Solver-
Operation failing, operations from the next highest bidding solvers will be executed sequentially
in the same transaction. To enable this functionality, Atlas ensures that all solvers must have
sufficient funds in escrow to repay the third-party bundler for their respective gas.

The utilization of various enforcement techniques alongside native bundling may increase the
likelihood of successful execution. Developers can choose an enforcement mechanism based on
their specific needs:

– Surcharged gas requirements:

Increasing the cost for spam transactions and driving greater balances for Atlas-native
cross-operation flash loans (discussed below).

– Reputation:

Utilizing the repetitive nature of order flow to encourage good behavior.

– Bonding:

Solvers lock funds that can be slashed if they misbehave.

– Upfront payment:

Unconditional auction bids, payment for a seat at the table, or payment for the rights to a
period of order flow.

• Beneficiary Payments

The Atlas EntryPoint contract reverts SolverOperations that fail to pay the promised amount to
the auctioneer’s designated beneficiaries, charging the solver for their full gas usage. This ensures
that the allocation of value within Atlas benefits from the execution enforcement mentioned
above.

3.4 atlETH

atlETH serves as a wrapped representation of ETH within Atlas, enabling solvers to escrow funds for
their gas consumption. Solvers pre committing to cover the gas costs for their respective operations
allows bundlers to execute Atlas transactions that include multiple third party SolverOperations. It
also discourages solver spam by leveraging the DoS protection inherent in the underlying chain’s gas
costs.

Verification of the solvers’ atlETH balance is the responsibility of the OR and/or Atlas SDK. At
the smart contract level, Atlas restricts solvers from participating in more than one auction per block
to avoid double counting bonded atlETH across multiple applications and bundlers. Any attempt by
solvers to execute a second operation in the same block results in a reverted operation, with solvers
still incurring charges for their total gas costs. To engage in multiple intrablock Atlas auctions, solvers
must use separate EOAs and maintain bonded atlETH balances in each.

The solver is responsible for approving payment for the sum of the following:

• The gas cost of the transaction so far, excluding costs attributed to reverted operations of other
solvers.

• The gas cost remaining in the transaction up to the gas limit.

• The outstanding balance of any cross-operation flash loan initiated by the hooks.

A hold is placed on the solver’s bonded atlETH balance for the total owed, which is later decreased
by the Atlas smart contract at the end of the transaction. Solvers may estimate the gas limit and
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value of the Atlas transaction before signing their operation. Solvers under attack by malicious orig-
inators, auctioneers, or bundlers will not be liable for their gas cost - an altered UserOperation or
CallChainHash will attribute any accrued solver gas costs to the bundler.

atlETH also enables an Atlas-native cross-operation flashloan system. Smart contract hooks can
initiate loans by calling the borrow() function before the solver phase of the Atlas transaction lifecycle.
These flashloans serve various purposes, such as:

• Initiating a loan for the originator to transact without requiring the gas token.

• Allowing the originator to interact with smart contracts relying on the msg.value parameter.

• Serving as collateral to fund and manage multi-stage settlement during the atomic creation and
sale of structured products or derivatives between originators and solvers

3.5 Execution Environment and Permit69

The Execution Environment (EE), a lightweight ’smart contract account’ within Atlas, establishes a
trust-minimized environment for interactions of originators, solvers, and applications [21]. To provide
an additional layer of protection against allowance-based exploits, the EE incorporates a new token
permittance function called Permit69. Operations within the EE are executed through delegateCalls,
requiring the ability to initiate token transfers from the originator. Originators approve the Atlas
contract only once for token transfers; Permit69 subsequently verifies whether transfer requests origi-
nate from a valid EE. This verification leverages the deterministic smart contract deployment address
feature of the CREATE2 opcode. It recreates the EE’s address with the originator’s and DAppCon-
trol’s address as seeds, and then matches the result with the caller’s address. Applications also utilize
Permit69, transferring tokens accumulated in the DAppControl contract. This function undergoes the
same verification process as the EE.

3.6 Gas Costs

Atlas is less efficient in utilizing block space compared to builder-integrated backrun OFAs or permis-
sioned OFAs. This inefficiency stems from the checks and verifications necessary for Atlas to operate
without relying on guarantees from block builders or solvers. This extra gas usage will typically be
covered by solvers. In cases where no solver is willing to bear the increased gas cost, originators have
the option to perform a non-Atlas transaction. The extra gas cost should only be incurred when the
expected benefit outweighs the anticipated cost, which can be assessed ex-ante by the auctioneer.

4 Atlas Integration

An application wishing to integrate Atlas needs to complete just three steps:

1. Embed the Atlas SDK into their interface.

2. Create and publish an Atlas Module.

3. Interact with the Atlas smart contract to initialize their DAppControl contract and link it to
their Atlas SDK.

4.1 Atlas Modules

Atlas modules are ’DAppControl’ smart contracts, where developers define hooks that execute at
specific stages of the Atlas transaction. Modules also contain app-specific settings, such as the address
of permitted bundlers or whether asynchronous processing of originator nonces is permitted. These
functions and settings are referenced by the Atlas EntryPoint contract during execution, creating a
trust-minimized environment for the application that is highly composable with its existing smart
contracts. The DAppControl contract must define the following functions:

1. BidFormat: This function defines the base currency (or currencies) of the auction.
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2. BidValue: This function defines how to rank bids so that they can be sorted by the auctioneer.

3. AllocateValue: After a SolverOperation is executed successfully, this function is called to pro-
grammatically allocate any value that has accrued to certain parties.

4.2 Additional DAppControl Hooks

The DAppControl contract has the option to define functions that execute at the following stages.
These functions are called by the execution environment via delegateCall:

• PreOps: This function is executed before the UserOperation.

• PreSolver: This function is executed after the UserOperation, and before the SolverOperation.
It occurs inside of a try/catch; if it reverts, the current solver’s solution will fail and the next
solver’s solution will begin. If the SolverOperation or the PostSolver function revert, anything
accomplished by the PreSolver function will also be reverted.

• PostSolver: This function is executed after a SolverOperation. It occurs inside of a try/catch; if
it reverts, the PreSolver function and the current SolverOperation will also be reverted, and the
next solver’s solution will begin.

• PostOps: This function can be triggered after the execution of the SolverOperations, and the
allocateValue call. If this function reverts, the UserOperation will also be reverted. Importantly,
the PostOps hook will know whether or not a SolverOperation was successful, which enables the
Atlas module to use this hook as a fallback fulfillment if all SolverOperations fail.

4.3 Further Customizations

The auction numeraire is configurable, allowing developers to choose their preferred token. The al-
location of MEV can be further customized within the allocateValue hook in their EE. For instance,
they may opt to use a portion of the MEV to refund the bundler’s gas cost, allocate another portion
to offset the impermanent loss of the protocol’s liquidity providers, and use the remaining portion to
purchase that protocol’s token for the originator. Applications also have the option to subsidize the
winning solver’s gas cost. It’s important to note that, unlike traditional AA designs, Atlas empowers
applications to conditionally subsidize solver gas costs based on the outcome of either the originator’s
or the solver’s execution.

5 Conclusion

Effectively capturing and retaining MEV for originators and applications is best achieved through an
intent-centric OFA with default MEV protection. The programmability of Atlas reduces the complexity
of building application-specific, intent-centric OFAs. By establishing a unified and permissionless
standard for order flow, Atlas aims to enhance decentralization and offer more competitive solver
execution at lower costs for developers. This standard also enables Atlas to be compatible with any
EVM chain and improve the overall user experience.
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